REPORT ON THE SURVEY OF
NORTHERN LAKE NYASA
REPORT
ON THE SURVEY
OF NORTHERN LAKE NYASA
1954-55
by the
Joint Fisheries Research Organization

P. B. N. JACKSON, M.Sc.
Joint Fisheries Research Organization, Samfya, Northern Rhodesia

T. D. ILES, B.Sc.
Fisheries Laboratory, Ministry of Agriculture and Fisheries, Lowestoft

D. HARDING, B.Sc.
Joint Fisheries Research Organization, Samfya, Northern Rhodesia
AND

G. FRYOR, Ph.D.
Freshwater Biological Association, Ambleside

1963
PRINTED AND PUBLISHED BY THE GOVERNMENT PRINTER
ZOMBA, NYASALAND
CONTENTS

<table>
<thead>
<tr>
<th>FOREWORD</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

CHAPTER ONE

INTRODUCTORY

1. **Introduction** | 3
2. **Summary of Recommendations and Conclusions** | 5

CHAPTER TWO

STUDIES ON THE HYDROLOGY OF LAKE NYASA AND ASSOCIATED RIVERS

1. **Description of the Lake** | 10
2. **Meteorological Data Affecting the Lake** | 11
3. **Analyses of Inflows into the Lake** | 12
4. **Water Temperatures and Chemistry of the Lake** | 14

CHAPTER THREE

STUDIES ON THE INVERTEBRATES, WITH ESPECIAL REFERENCE TO CRUSTACEA

1. **Free-Living Crustacea** | 45
2. **Parasitic Crustacea**:
 (a) General | 50
 (b) Key to the species of parasitic Copepoda and Branchiura of Lake Nyasa | 52
3. **Notes on Some Other Invertebrate Fauna** | 53

CHAPTER FOUR

THE FISHES OF NYASALAND, WITH ESPECIAL REFERENCE TO NORTHERN LAKE NYASA

1. **Studies on Systematics and Ecology**:
 A. **Introduction** | 55
 B. **Broad Ecological Zones in the Nyasaland Area** | 55
 C. **Check-list of the Fishes of Nyasaland** | 58
 D. **Notes on Zambezi Fishes** | 92
2. **Notes on the Biology of BAGRUS MERRIDIONALIS**:
 A. **Breeding** | 95
 (1) **Sex Ratio** | 95
 (2) **Breeding Cycle** | 96
 (3) **Breeding Behaviour** | 99
 B. **Feeding** | 100
3. **The General Biology of Utaka:**

- Systematics ... 102
- Habits and Abundance 102
- Feeding .. 106
- Breeding and Growth Rate 107
 (I) *Haplochromis quadrimaculatus* 107
 (II) *Haplochromis virginalis* 109
 (III) *Haplochromis pleurostigmaoides* 110
 (IV) *Haplochromis molo* 111
 (V) *Haplochromis barleyi* 111
 (VI) Other Species 112

CHAPTER FIVE

The Fisheries of the Northern Lake

1. **The Gill-Net Fishery of the Northern Lake:**

- Introduction .. 118
- Procedure .. 120
 I. Description of a Gill-Net 120
 II. Some Theoretical Considerations 120
 III. Mounting 121
 IV. Suitable Lengths for Mounting 122
 V. Optimum Heights of Nets 125
 VI. Optimum Laying Depth 128
 (a) Depth Distribution Method 128
 (b) Results 129
 VII. Laying of Nets 129
 VIII. Care and Maintenance of Gear 130
- The Experimental Gill-Net Fishery 131
 I. General ... 131
 II. Small-mesh Nets 132
 (a) 2½ inch Nets 133
 (b) 3 inch Nets 135
 III. Large-mesh Nets 136
 (a) General 136
 (b) Characteristics of Large-mesh Gill-Nets 138
 (i) Average Weight of Fish 138
 (ii) Relative Occurrence of Species 138
 (iii) Variation in Catch throughout the Year . 139
 (iv) Length of Fishing Unit 140
 (v) Depth of Net 141
 (vi) Twine type and thickness 142
 (vii) Mesh size 144
2. THE UTAKA FISHERY IN THE NORTHERN LAKE:
 A. Introduction 145
 B. The present Fishery in the Northern Lake 146
 I. Methods 146
 (a) The Chilimila Net 146
 (b) The Kawelekete Net 150
 (c) The Ngongongo Net 151
 (d) Beach Seines 151
 C. Experimental Fishing 152
 I. Ring Netting 152
 II. Floating Trawl 153
 III. High-Speed Self-opening Trawl 153
 IV. Small-mesh Chilimila 153
 (a) Catch Data 153

3. DAMBO FISHING 158

4. RIVERS AND THE BARILIUSS FISHERY:
 A. General 159
 B. The Spawning Migration and African River Fishery 160
 C. African Fisheries for Barilius during the Spawning Migration 161
 I. The Spawning Fishery in the Luweya River 161
 II. Other Barilius Fisheries 165
 D. Discussion and Recommendations 166

5. THE FISHERY FOR USIPA:
 A. Introduction 167
 B. The Chiwu Method 168
 C. The Beach Seine 169
 D. The Usikite Net 171
 E. Discussion 171

MAPS:
 1 to 6 as folders in the back of the report.
LIST OF ILLUSTRATIONS

Plate I A. The laboratory, Nkata Bay.
 B. The research launch moored at Nkata Bay.
 C. Method of mounting gill-nets to head rope.
 D. Floats crushed by pressure in the deep gill-net fishery. The three on
 the left are unused.

Plate II MAJOR ECOLOGICAL ZONES
 A. A sandy sheltered bay in the northern lake; habitat for zone V fishes at
 Nkata Bay.
 B. A small sandy beach on the open northern lake, sharply adjacent to the
 more usual rocky shore; habitats for fishes of zones V and VI respectively near Nkata Bay.
 C. A rocky shore with some intermediate rock/sand area in the foreground;
 habitats for fishes of zones VI and VII respectively near Nkata Bay.
 D. Rock/sand zone; habitat for zone VII fishes near Nkata Bay.
 E. Dhowss and dug-outs at Fort Maguire; the weedy stagnant gutway in
 the foreground provides a typical habitat for zone III fishes in the
 southern lake, while sheltered zone IV conditions are beyond.
 F. A sheltered bay in the southern lake; zones V and VI at Monkey Bay.
 G. Sheltered zone V conditions in the northern lake; the anchorage at
 Bana.
 H. A slow-flowing reedy river in its lower reaches, habitat for zone III
 fishes; the Limpasa River ten miles inland from Nkata Bay.

Plate III THE DEEP GILL-NET FISHERY
 A. A large haul of Tilapia and Clariids; south-west arm.
 B. Setting a deep gill-net, Nkata Bay.
 C. Gill-nets and fish after hauling from 60–70 metres, Nkata Bay.
 D. Bathyclarias nyasensis, B. longibarbis and Bagrus meridionalis in gill-
 nets hauled from 60–70 metres, Nkata Bay. Note the distended abdo-
 men of the Bagrus caused by the rapid change in pressure.

Plate IV Four species of Utaka from a chirimila at Nkata Bay. From top to
 bottom:
 A. Haplochromis H, H, H,
 B. Bathyclarias gigas, Nkata Bay.
 C. Bathyclarias filicibrasis, Nkata Bay.
 D. Haplochromis heterotaenia Nkata Bay.
AFRICAN FISHERIES

Plate V
A. The gorge at Chiwandama, Luweya river, where Sanjika (Barilius microcephalus) are caught on their upstream breeding migration.

B. Breeding Sanjika being lifted from slack water in crevice of the rock, where they rest before attempting to move further up the rapids. Note the construction of the "Khombe" net.

C. "Mono" basket set in deep water to catch Synodontis njassae. Usually baited with dough as fish bait attracts crabs. Near Nkata Bay.

D. Arrangement of canoe for Usipa fishing. The torch-bearer is forward with the netsman close to him, while the paddler sits astern.

Plate VI
A, B, C. A seasonal fishery for breeding Rhamphochromis (probably R. longiceps) at Bana near the entrance to the lagoon (obstructed by weir, C). Small seines are hauled by the two men.

D. A large beach seine being hauled in the south-west arm.

E, F. Fishing in Kambwe lagoon near Karonga with scoop nets, and baskets are stabbed vertically downwards, trapped fish being removed through an aperture halfway up.

G. A "Mono" basket trap filled with crabs, the result of baiting with fish bait, Nkata Bay.
LIST OF FIGURES

Chapter Two

Fig. 1. Lake Nyasa after E. L. Rhoades and W. B. Phillips 1901 (from van Meel 1954). The shaded area on the chart indicates the part of the lake which lies below sea level

Fig. 2. Rainfall at Nkata Bay between November, 1953, and August, 1955

Fig. 3. Profiles of oxygen, pH and temperature in the South Bay, Nkata Bay, March, 1954

Fig. 4. Station I: Nkata Bay 28.vii.54. Distribution of temperature, oxygen silicate and phosphate in the top three hundred metres at this station

Fig. 5. Station I: Nkata Bay 2 ix.54. Temperature and oxygen profiles

Fig. 6. Temperature distribution at a Station approximately 20 miles NNW of Likoma Island. 14.ix.54

Fig. 7. Thermoclines recorded (a) with a Freidinger reversing thermometer and (b) a thermistor. Readings taken simultaneously at Nkata Bay near Station I, 3.xii.54

Fig. 8. Distribution of temperature, oxygen and silicate at Station I, Nkata Bay 25.iii.55

Fig. 9. Temperature profiles on several dates during 1954 and 1955 at Station I, Nkata Bay

Fig. 10. Isotherms at Station I, Nkata Bay, between the months of September, 1954, and October, 1955. Wind speed and barometric pressure are included on the graph for the same period

Fig. 11. Temperature change at seven depths, recorded at Station I, Nkata Bay, between March, 1954, and October, 1955

Fig. 12. Annual fluctuation in the phosphate content of water taken from five different levels at the Nkata Bay deep station during 1954 and 1955. Phosphate measured as mg./L. P.

Fig. 13. Temperature profile and silicate distribution at Station I, Nkata Bay, on 7.ii.55

Fig. 14. Conductivity change (K corr) at 0, 50, 100, 200, and 300 metres, at Station I, near Nkata Bay

Fig. 15. Plankton volumes stained from the top hundred metres using coarse (60 m.p.i.) and fine (120 m.p.i.) nets. Volumes given are those sedimented from 7,070 litres of lake water. Silicate mean values in the top fifty metres are superimposed on the histogram. Station I, Nkata Bay, March, 1954, to October, 1955

Fig. 16. Usisya Deep Station (over 385 fathoms). Profiles of temperature, oxygen, silicate and phosphate down to 600 metres. 21.vii.55

Fig. 17. Bridge diagram and calibration curve of a thermistor set used at Nkata Bay. Lettering: T = Stantel Type Thermistor (2311/300); S = Helical Potentiometer of 1,000 ohms resistance; Resistances: R1 = 1,600 ohms; R2 = 2,500 ohms; G = galvonometer 3,000 ohms resistance with maximum sensitivity at the centre zero. The battery used in the circuit was a 1.34 v. Ruben Mallory Battery RMB-3
Chapter Three

Fig. 1. The Planktonic Crustacea of Lake Nyasa

Fig. 2. Examples of the Crustacean parasites of the fishes of Lake Nyasa

1. Chonopeltis inermis. 2. Argulus africanus. 3. Afrolernea longiollis. 4. Lamproglona nyasae. 5. Ergasilus cunningtoni. 6. Lernea bagri. (After Harding and others original or simplified from Fryer.)

Chapter Four

Section 2

Fig. 1. Bagrus meridionalis. Variation of percentage males with length
Fig. 2. B. meridionalis. Breeding cycle of female
Fig. 3. B. meridionalis. Percentage males caught throughout the year
Fig. 4. B. meridionalis. Stomach contents

100 et seq. to p. 101

Section 3

Fig. 1. Haplochromis quadrimaculatus. Length frequency. Breeding fish
Fig. 2. H. quadrimaculatus. Length frequency diagrams
Fig. 3. H. quadrimaculatus. Growth of 1954 year class
Fig. 4. H. virginalis. Length frequency breeding fish
Fig. 5. H. virginalis. Length frequency diagrams (Two pages)
Fig. 6. H. virginalis. Growth of 1954 year class
Fig. 7. H. borleyi. Length frequency of breeding fish

112 et seq. to p. 113

Chapter Five

Section 1

Fig. 1. Diagram of stretched length of netting
Fig. 2. Correct method of mounting a gill-net
Fig. 3. Single mesh of net at its maximum fishing area
Fig. 4. Relation between area of gill-net and method of mounting
Fig. 5. Method of mounting weights
Fig. 6. Distribution of fish in 5 x 26 mesh gill-net
Fig. 7. Relation between fish and mesh shape in two types of gill-net fishery
Fig. 8. Determination of depth profile of gill-net
Fig. 9. Typical depth profile
Fig. 10. Variation in Nos. Fish/Unit effort throughout year (a & b)
Fig. 11. Frequency histogram of catches with nylon and flax nets

122 et seq. to p. 123

Section 2

Fig. 1. Chilimila net

128 et seq. to p. 129

(a & b)

140

142

xi
Maps and Charts

Map 1. Contours of Lake Nyasa, land above lake level showing contours and rivers entering the lake, sampling stations.

Map 2. Chart of Lake Nyasa, compiled by J. G. Pike, including soundings taken during several cruises in the Northern Lake Nyasa and soundings after Rhoades.

Map 3. Likoma and Chisumulu Islands showing soundings and indicating the location of the main Utaka grounds.

Map 4. Mbamba Bay, Likoma Island, showing fishing grounds.

Map 5. Enlarged section of the Utaka fishing grounds—Likoma Island. Dotted areas are submerged Virundu.

Map 6. Virundu at Nkata Bay.